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A procedure for explicitly incorporating the effects of long range potentials in 
variational trial functions for electron-atom and electron-ion scattering is outlined. 
The component of the wavefunction that represents the asymptotic solution consists of 
two parts. Outside a certain boundary radius, the asymptotic solutions are generated 
numerically. The total trial wavefunction is made everywhere smooth and continuous 
by matching these asymptotic solutions at the boundary with two fixed analytical 
linearly independent functions, defined within the radius in each channel. Two choices 
of the fixed internal functions are considered. The numerical feasibility of this approach 
is investigated by application to the problem of scattering of electrons from atomic 
hydrogen in the static exchange approximation and from the positive He ion in the 
static approximation. 

I. INTR~DuCTJ~N 

Variational methods have been successfully applied to some problems of 
electron-atom scattering [l, 21. In the approaches so far considered, the channel 
wavefunctions have been expanded in terms of Slater orbitals complemented 
with free solutions which behave asymptotically as Bessel and Neumann functions 
of appropriate order. Some difficulties have, however, been experienced due to the 
fact that atomic problems have long range potentials; and therefore Bessel and 
Neumann functions are not always the best approximations to the asymptotic 
solutions, Seiler et al. [2], in their work on electron-hydrogen scattering, have 
tried to incorporate the corrections to the free solutions by including in the basis 
set normalizable trigonometric functions in addition to the usual Slater orbitals. 
Further, to our knowledge, there has not been any meaningful application of the 
variational formalism to the problem of electron-ion scattering because of 
difficulties in evaluating matrix elements involving coulombic functions. The 
only exception is the calculation of Bransden and Dalgarno [3], who in 1953 
computed s-wave phase shifts for e--He+ scattering using simple trial functions. 

In this paper we consider an alternative method which is a natural extension 

*Partially supported by the Office of Naval Research, Contract No. NOOO14-72-C-0051. 

526 
Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



NUMERICAL ASYMPTOTIC FUNCTIONS 527 

of the previous variational approaches. We replace the free asymptotic solutions 
by those generated by numerical integration in the asymptotic region. The 
numerically ‘exact’ solutions in the asymptotic region are integrated inwards to 
a fixed boundary radius, which may be the distance within which the exchange 
effects are important. These solutions at the boundary are now arbitrarily extended 
to the origin by matching at the boundary with two fixed inner functions which 
are well behaved at the origin. Thus the asymptotic solutions, consisting of the 
numerical functions outside the boundary and linear combinations of known 
analytical functions inside it, are everywhere continuous and have continuous first 
derivatives. The effects of long range potentials, both in electron-atom and 
electron-ion scattering, are explicitly taken into account by numerical integration 
in the asymptotic region. The expansion of open channel functions in terms of 
Slater orbitals is now expected to smooth out the distortions in these functions, 
occurring due to the presence of fixed inner functions within the boundary radius. 

This procedure is closely related to the R-matrix method [4] in the sense that 
known numerical asymptotic solutions are used outside a boundary radius. 
In the R matrix method, the wave function within the boundary is expanded in 
terms of basis functions which have a fixed but arbitrary logarithmic derivative 
of the boundary. An approximate value of the logarithmic derivative of the true 
wavefunction at the boundary is obtained by using Green’s theorem; and the 
scattering information is then obtained from the knowledge of known asymptotic 
solutions. It can be shown that the R-matrix method is equivalent to a variational 
formalism in which there is a discontinuity in the slope of the wavefunction at the 
boundary radius [5]. Our approach is motivated by the desire to remove this 
discontinuity in the slope of the wavefunction which should hopefully improve 
convergence of the results with respect to the basis functions. Further, in contrast 
to the R-matrix approach, the basis orbitals in the present method can continue 
to be Slater orbitals which are defined over the full range of space. Therefore all 
matrix elements, both for electron-atom and electron-ion scattering, can be 
evaluated relatively easily. 

Details of the proposed method are given in Section II. In Section III, we consider 
the numerical feasibility of this approach by application to electron-hydrogen 
atom and electron-helium ion scattering in the static exchange and static approxi- 
mations respectively. Section IV contains a brief discussion and conclusions. 

II. FORMALISM 

For simplicity and in order to bring out the salient features of the proposed 
method, we shall consider only elastic scattering here. Extension to multichannel 
problems is straightforward. Consider I-wave scattering from a potential V(r), 
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which may be local or nonlocal. The radial Schriidinger equation in Hartree 
atomic units is 

where 

[H - k2/2] t,b = 0 to 

H = (~/2)[-(d2/d~3 + (I(, + l>/r31 + V(r) 
with 

lim[rV(r)] = 2 as r-+co 

and 
lim[r2V(r)] = 0 as r + 0. 

The general solution of Eq. (1) can be written as 

1G(r> = ddr) + th(r> (2) 

with the boundary conditions: t,&(O), &(O) = 0 and y&(r) -T+m k1i2 sin 8; 
A@> -r+oo k-If2 cos 0,where 

6’ = kr - (h/2) + (Z/k) In(2kr) + arg r(l + 1 - Z/k). (3) 

Here the parameter t is the tangent of the phase shift. 
In the variational procedures, the functions & and +I are approximated as 

h(r) = T G,m(r) + E;(r); 1 = 0, 1. (4) 

Here rla are quadratically integrable functions and the asymptotic forms of 
functions I& and & are contained in the functions F. and Fl , respectively. Generally 
the functions FI(r) are taken to be analytical functions which are regular at the 
origin and which behave asymptotically as regular and irregular free solutions of 
W. (1). 

We propose to use functions Fl which are the ‘exact’ numerical solutions to 
Eq. (1) outside a boundary radius r,, and are defined arbitrarily within this 
boundary. The radius r,, may be chosen to be a point beyond which the nonlocal 
part of the potential V(r) is negligible. Therefore, ignoring the nonlocal part of 
the potential, two linearly independent solutions, defined as G,(r), can be generated 
numerically outside r,, , starting from an asymptotic value. The asymptotic 
expansions of Burke and Schey [6] can be used to calculate the solutions at an 
asymptotic position. Now define two linearly independent functions g, and g, 
within the boundary radius such that 

M> = %lgdr) + a2.,g2(r> for r < r, , 

and G(r) for r >, r. . 
(5) 
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The coefficients a,,, and a2,[ are determined by matching the functions F,(r) and 
G,(r) and their derivatives at r,, . Notice that by construction 

[H - k2/2] Fl(r) = 0 for r 2 r. . (6) 

Now we can use the functions #, of Eq. (4) in the variational formalism to 
determine the quantity t, the tangent of the phase shift. The functions g, and g, 
may be selected to be of forms which are rather elementary. We have considered 
two choices. 

Choice I : g, = r z+l, g, = rz+2. 

Choice II: g, = (1 - e--‘)l+l sin kr, g, = (1 - e-‘)l+l cos kr. 

With these choices, the evaluation of the required matrix elements is straight- 
forward. To see this we consider the variational formalism in some detail. 

The tangent of the phase shift is given in terms of the matrix m,, defined as [7] 

mIJ = MU - c MI,(M-l),b MbJ 
nb 

where Z, J can have values of 0 and 1. The other matrices defined are: 

the bound-bound matrix 

Mab = (‘la 1 H - E 1 qb); 

the bound-free matrix 

63) 

(9) 

M,I = MI, = (rla I H - E I F,); (10) 

and the free-free matrix 

MIJ = (FI I H - E I F,). (11) 

Here the round brackets denote integration limits from 0 to r, . In evaluating 
Eqs. (10) and (11) we exploit the fact that the functions FI are exact solutions 
outside the radius r,, , as stated in Eq. (5). In actual computations it is convenient 
to avoid the explicit evaluation of the inverse of the bound-bound matrix. More 
accurate evaluation of the second term in Eq. (8) can be achieved by triangular 
factorization of the bound-bound matrix [8]. In terms of the quantities mN of 
Eq. (8), the Kohn variational result for the tangent of the phase shift is 

5W2/4-7 
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An analogous formula for the cotangent of the phase shift is 

tk -l = 4%1/%0) + w%o)r~,,~ll - %1%31* (13) 

A judicious choice between the two alternative formulas (12) and (13) can be 
made by using the ratio m,Jm,, as a criterion [7]. 

III. APPLICATION TO e--(H,He+) SCATTERING 

The formalism is applied to the problem of scattering of electrons from the 
hydrogen atom in the static exchange approximation and from the helium ion 
in the static approximation. The potential V(r) in Eq. (1) is given by the expression 

where for the partial wave I, S is the total spin, Z is the nuclear charge, &(r) is the 
reduced radial function for the ground state of the target and x,(x,) is the smaller 
(larger) of r and x. A simple choice of the fixed internal functions is: g, = rz+l, 
g, = rz+2. In Table I, we present the computed phase shifts of several partial 
waves for e--H scattering. The expansion functions in Eq. (4) are taken to be of 
the form 

vi = rp’+ze-ar, i= 1,iv. (15) 

For s- and p-wave scattering, the exponent a: = 2.5 was used and the boundary 
radius r, was tied at ten Bohr radii. For numerical integration outside this radius, 
the exchange terms were ignored since they vanish exponentially. For higher 
partial waves, the radius can be chosen to be even smaller, since the centrifugal 
term dominates the exchange effects. This is substantiated by the results for 
d-waves in Table I, where we choose the radius to be eight Bohr radii. For d-wave 
scattering, 01 = 3.5 was used for the basis functions of Eq. (15). 

For the problem of e--He+ scattering in the static exchange approximation, 
there are no satisfactory tabulated results. Sloan [9] has pointed out that the 
Bransden and Dalgarno [3] phase shifts are not very accurate and he has displayed 
his results in a graphic form. We have therefore obtained ‘exact’ results by numerical 
integration of Eq. (I), but in the “static” approximation, ignoring the exchange 
terms in Eq. (14). This does not detract from our final conclusion, since we have 
already shown how exchange terms can be treated within the radius of integration. 
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TABLE I 

Singlet Phase Shifts for Scattering of Electrons from Atomic Hydrogen in the Static Exchange 
Approximation Using Choice I(I1) of Fixed Internal Functions, 

The two choices am defined by Eq. (7) in the text. N denotes the expansion length and the ‘exact’ 
results are taken from Ref. [lo]. 

k 8 
N 
16 24 Exact 

L=O 0.1 2.377(2.398) 2.398(2.398) 2.398(2.398) 2.396 

0.3 1.441(1.512) 1.511(1.512) 1.512(1.512) 1.508 

0.5 0.955(1.031) 1.031(1.031) 1.031(1.031) 1.031 

0.8 0.127(0.651) 0.641(0.651) 0.65qO.651) 0.651 

L = 1 0.1 -O.OOl(-0.002) -O.OOl(-0.001) -O.OOl(-0.001) -0.001 

0.3 -0.024(-0.025) -0.024(-0.024) -0.024(-0.024) -0.024 

0.5 -0.203(-0.070) -0.073(-0.078) -0.072(-0.070) -0.070 

0.8 -0.188(-0.116) -0.121(-0.115) -0.117(-0.115) -0.116 

L=2 0.1 -3 x lo-6(-2 x lo-‘) -3 x lo-6(--4 x 10-6) -3 x lo-6(-3 x 10-B) 0.000 

0.3 -5 x 10-4(-0.024) -5 x lo-*(-6 x lo-3 -5 x 10--4(-5 x lo-3 0.000 

0.5 -O.OOS(-0.028) -0.004(-0.004) -0.004-0.004) -0.004 

0.8 -0.322(-0.016) -0.021(-0.014) -0.016(-0.014) -0.014 

The numerically ‘exact’ phase shifts in the static approximation agreed to three 
significant figures with the variational phase shifts when a radius of two Bohr radii 
was chosen. In Table II, we present the s-wave phase shifts for e--He+ scattering 
in the static approximation for five energies chosen by Bransden and Dalgarno. 
It is seen from Tables I and II that the present method gives good results with 
large expansion lengths both for e-H and e-He+ scattering. However for high 
energies, especially for e-He+ scattering for k = 1.353 and k = 1.895, even for 
an expansion length of 24, the results are not fully converged for choice I of the 
internal functions. This we ascribe to the fact that at high energies, the channel 
wave functions are highly oscillatory and therefore a polynomial choice of tied 
internal functions is not a good approximation. For the ions, however, since the 
target states are very localized, even a smaller boundary radius can be chosen and 
we find that for a radius of five Bohr radii, the phase shifts are obtained within 
one percent of the ‘exact’ phase shifts. This leads us to a second choice of the 
fixed internal functions which are oscillatory by construction. We choose 
g1 = (1 - e-r)z+1 sin kr and g, = (1 - e- ) 7 z+l cos kr. As seen from Tables I 
and II, the latter choice gives excellent results for both e--H and e--He+ scattering. 
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TABLE II 

S-Wave Phase Shifts for Scattering of Electrons from Positive Helium Ion in 
the Static Approximation. 

Row (a) corresponds to a radius of five Bohr radii and (b) corresponds to a radius of ten Bohr 
radii. Choices I and II have the same meaning as in Table I. ‘Exact’ results are obtained by 

numerical integration. 

k 

0.491 

0.779 

1.076 

1.353 

1.895 

N 
8 16 24 Exact 

(4 0.571(0.576) 0.576(0.577) 0.576(0.577) 0.577 

@I 0.398(0.537) 0.56qO.576) 0.577(0.577) 

(4 0.542(0.557) 0.557(0.559) 0.558(0.560) 0.560 

(b) -0.682(0.514) 0.555(0.559) 0.559(0.560) 

(a) 0.531(0.536) 0.534(0.536) 0.536(0.537) 0.536 

(b) -0.152(0.483) 0.445(0.534) 0.526(0.537) 

(4 0.481(0.513) 0.511(0.513) 0.512(0.513) 0.513 

@> 1.0783(0.512) 0.507(0.513) 0.504(0.513) 

(a) 0.315(0.466) 0.446(0.468) 0.462(0.468) 0.468 

(b) -0.470(0.471) -0.364(0.461) 0.457(0.469) 

IV. CONCLUSIONS 

We have outlined a procedure for incorporating the effects of long range 
potentials in variational methods for scattering. The proper choice of the boundary 
radius up to which the numerical solutions are to be integrated is crucial to this 
approach. It is observed that the smaller this radius, the lower the number 
of expansion functions needed to approximate an exact wavefunction. However if 
the radius is too small, the nonlocal potentials cannot be completely ignored in 
the numerical integration of the differential equations. It is shown by the examples 
considered here that good results can be obtained with reasonable values of the 
boundary radius and of the expansion length of the normalizable functions 
especially if choice II (Eq. 7)) of the fixed internal functions is made. However 
the computer time required for the calculation of integrals is considerably more 
as compared to using choice I. If the ultimate goal is to justify use of choice I 
of fixed internal functions by making the boundary radius small, one would need 
to consider the small effect of nonlocal potentials outside the boundary radius 
in some approximate way. 
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